link
NASA is celebrating Independence Day this year by putting a spacecraft into orbit around Jupiter. The space agency’s Juno mission is slated to arrive at the massive planet on the night of July 4th, after having traveled across more than 1.7 billion miles of space over the past five years. Once Juno arrives, the probe’s main engine will fire, slowing the spacecraft down and placing it into orbit around Jupiter. It’s an important event for the mission, especially since NASA has only one shot at getting it right. If Juno flies past Jupiter, the mission will be blown.
JUNO WILL EVENTUALLY FLY CLOSER TO THE GAS GIANT THAN ANY OTHER SPACECRAFT BEFORE
If all goes as planned, Juno will eventually fly closer to the gas giant than any other spacecraft before, allowing NASA to figure out what’s going on underneath all of Jupiter’s thick clouds. "We have sent spacecraft to the Jovian system before, but they all kept their distance from Jupiter," Steve Levin, a Juno project scientist at NASA’s Jet Propulsion Laboratory, told The Verge. "[Juno’s] orbit actually enables a lot. It’s a key part of doing the science we want to do."
That science involves studying the amount of water in Jupiter’s atmosphere, as well as mapping the planet’s huge magnetic field. Juno will also study Jupiter’s gravity to figure out if a dense core lurks deep underneath. All of that information will help NASA deconstruct the origins and history of the solar system’s largest planet. Scientists have a lot of theories about how Jupiter formed and how it got into its current orbit, but Juno’s data will help researchers strengthen our understanding of where Jupiter came from. And that will ultimately tell us how the rest of the planets formed—including our own.
link
NASA’s Juno spacecraft has officially crossed the barrier over into Jupiter’s magnetosphere, the powerful magnetic field that extends millions of miles around the planet. Within this magnetosphere, particles move based on what’s going on inside Jupiter. NASA believes Juno entered this region of space between June 24th and 25th. Now, the vehicle is continuing even further into the field and is slated to arrive at Jupiter on July 4th, when it will insert itself into the planet’s orbit. It will allow the spacecraft to study the gas giant in more detail than ever before.
JUPITER'S MAGNETIC FIELD IS CONSIDERED TO BE THE LARGEST STRUCTURE IN OUR SOLAR SYSTEM
Jupiter's magnetic field, which is about 20,000 times stronger than Earth’s magnetic field, is considered to be the largest structure in our Solar System. "If Jupiter's magnetosphere glowed in visible light, it would be twice the size of the full Moon as seen from Earth," said William Kurth lead co-investigator for Juno’s Waves investigation. The magnetosphere is constantly being bombarded by charged particles streaming from the Sun, called solar wind. Some of these charged particles get trapped inside the magnetosphere, as well as particles coming from Jupiter’s volcanically active moon Io. The result: parts of the magnetosphere are a radioactive hell scape that can potentially fry any electronics that venture deep inside. But on the bright side, the field is also great for making some stunning aurorae!
Launched August 5, 2011
Can't wait to see what secrets will be revealed.
Juno Spacecraft and functions
NASA is celebrating Independence Day this year by putting a spacecraft into orbit around Jupiter. The space agency’s Juno mission is slated to arrive at the massive planet on the night of July 4th, after having traveled across more than 1.7 billion miles of space over the past five years. Once Juno arrives, the probe’s main engine will fire, slowing the spacecraft down and placing it into orbit around Jupiter. It’s an important event for the mission, especially since NASA has only one shot at getting it right. If Juno flies past Jupiter, the mission will be blown.
JUNO WILL EVENTUALLY FLY CLOSER TO THE GAS GIANT THAN ANY OTHER SPACECRAFT BEFORE
If all goes as planned, Juno will eventually fly closer to the gas giant than any other spacecraft before, allowing NASA to figure out what’s going on underneath all of Jupiter’s thick clouds. "We have sent spacecraft to the Jovian system before, but they all kept their distance from Jupiter," Steve Levin, a Juno project scientist at NASA’s Jet Propulsion Laboratory, told The Verge. "[Juno’s] orbit actually enables a lot. It’s a key part of doing the science we want to do."
That science involves studying the amount of water in Jupiter’s atmosphere, as well as mapping the planet’s huge magnetic field. Juno will also study Jupiter’s gravity to figure out if a dense core lurks deep underneath. All of that information will help NASA deconstruct the origins and history of the solar system’s largest planet. Scientists have a lot of theories about how Jupiter formed and how it got into its current orbit, but Juno’s data will help researchers strengthen our understanding of where Jupiter came from. And that will ultimately tell us how the rest of the planets formed—including our own.
link
NASA’s Juno spacecraft has officially crossed the barrier over into Jupiter’s magnetosphere, the powerful magnetic field that extends millions of miles around the planet. Within this magnetosphere, particles move based on what’s going on inside Jupiter. NASA believes Juno entered this region of space between June 24th and 25th. Now, the vehicle is continuing even further into the field and is slated to arrive at Jupiter on July 4th, when it will insert itself into the planet’s orbit. It will allow the spacecraft to study the gas giant in more detail than ever before.
JUPITER'S MAGNETIC FIELD IS CONSIDERED TO BE THE LARGEST STRUCTURE IN OUR SOLAR SYSTEM
Jupiter's magnetic field, which is about 20,000 times stronger than Earth’s magnetic field, is considered to be the largest structure in our Solar System. "If Jupiter's magnetosphere glowed in visible light, it would be twice the size of the full Moon as seen from Earth," said William Kurth lead co-investigator for Juno’s Waves investigation. The magnetosphere is constantly being bombarded by charged particles streaming from the Sun, called solar wind. Some of these charged particles get trapped inside the magnetosphere, as well as particles coming from Jupiter’s volcanically active moon Io. The result: parts of the magnetosphere are a radioactive hell scape that can potentially fry any electronics that venture deep inside. But on the bright side, the field is also great for making some stunning aurorae!
Launched August 5, 2011
Can't wait to see what secrets will be revealed.
Juno Spacecraft and functions