At the moment I have the space grey SS but am thinking of returning for the gold (when it is back in stock). Out of the two, which would be the more durable?
The space black. That’s what I have always had since series 0 and now with my series 4. The space black is a DLC process which is a diamond like carbon. The gold is PVD.
This is from an article on iMore.com from when the first Apple Watch was released.
“In the basic PVD process, a part is cleaned thoroughly and placed in a vacuum chamber, along with a consumable sample of plating material. Once the air is evacuated from the chamber, the material sample is vaporized by a heater and eventually condenses on the target part. PVD is a highly competitive, advancing technology with applications across many fields — anti-reflective, UV blocking, scratch resistant sunglass coatings. PVD — and the process is often heavily modified. The gist remains the same.
The PVD process is used to create a vast array of coatings, but the current gold standard for hardness and wear resistance is DLC. Essentially, a DLC coating is a 1-3 micron layer of carbon that self arranges into a structure similar to that found in a diamond, thus imparting some of a diamond's surface hardness properties.
The term "DLC" itself isn't just one kind of coating, there are 7-8 different basic chemistries, and each manufacturer of equipment and service provider often creates their own proprietary recipe and processes. (Tungsten DLC, for example, deposits a layer of tungsten on the part before the DLC layer is applied, promoting better adhesion).
So just how tough is DLC? The best way to put it is that the watch industry is a second or third tier user of DLC coatings. The vast majority of research and application of DLCs goes into highly engineered components that depend on DLC's hardness, friction reduction, corrosion resistance, and tribology advantages. (That's the study of how one material interacts with another during contact and sliding.) You'll find DLC coatings on shock absorbers and engine pistons in F1 cars, across the leading edges of fan blades in jet engines, coating critical medical implants, and the cutting tools inside the CNC mills and lathes that made the Apple Watch itself. (DLC extends cutter tool life, improves cut quality and allows for dramatic feed/speed increases.)”
https://www.imore.com/apple-watch-and-durability