So let's talk about what the Kaby Lake actually brings to the Macs. I'm definitely not a CPU expert so I'd love to hear some proper opinions on how this all applies to Macbook Pros, but here is what I found:
4K video
First, Kaby Lake has an upgraded graphics chip which supports encoding and decoding HEVC. This is the latest video codec which is designed for 4K video and it means a Kaby Lake chip will let you watch Netflix, Amazon or any other 4K video in HEVC format without sweating.
Performance
Kaby Lake chips perform better than Skylake. Not by a great deal, but there is a slight improvement. Base clock speeds are higher compared to the equivalent Skylake processor, and it’s the same for Turbo Boost frequencies.
Although you’d have to use benchmark tools to notice the difference for most applications, you should have no trouble detecting the improvement in 3D graphics power, at least for the mobile chips.
The Kaby Lake U-series processors have Intel Iris Plus graphics which promise up to 65 percent better performance than the GPU in equivalent Skylake chips
Users will also see a drastic improvement in the 3D graphics performance offered by Kaby Lake as compared to older generation processors, which directly translates to a better gaming performance. Intel actually showed off a Dell XPS 13 running Overwatch running on medium settings, and pulling around 30 fps.
PCIe lanes
Skylake processors have 20 lanes of communication to the PCH (Platform Controller Hub) but Kaby Lake adds an extra four. With the 16 PCIe lanes on the processor itself, a Kaby Lake system can have 40 PCIe lanes.
USB and Thunderbolt
These extra lanes are important particularly as PCIe is now being used for storage as SATA speeds become too limiting.
Kaby Lake also supports the latest version of USB-C (USB 3.1 Gen 2), which means speeds of up to 10Gb/s rather than 5Gb/s with Skylake. Again, that’s native support without needing a separate controller or add-in card on the motherboard. Similarly, there’s native support for Thunderbolt 3.0.
Kaby Lake systems can have up to 14 USB 2.0 and 3.0 ports and three PCIe 3.0 storage slots.
4K video
First, Kaby Lake has an upgraded graphics chip which supports encoding and decoding HEVC. This is the latest video codec which is designed for 4K video and it means a Kaby Lake chip will let you watch Netflix, Amazon or any other 4K video in HEVC format without sweating.
Performance
Kaby Lake chips perform better than Skylake. Not by a great deal, but there is a slight improvement. Base clock speeds are higher compared to the equivalent Skylake processor, and it’s the same for Turbo Boost frequencies.
Although you’d have to use benchmark tools to notice the difference for most applications, you should have no trouble detecting the improvement in 3D graphics power, at least for the mobile chips.
The Kaby Lake U-series processors have Intel Iris Plus graphics which promise up to 65 percent better performance than the GPU in equivalent Skylake chips
Users will also see a drastic improvement in the 3D graphics performance offered by Kaby Lake as compared to older generation processors, which directly translates to a better gaming performance. Intel actually showed off a Dell XPS 13 running Overwatch running on medium settings, and pulling around 30 fps.
PCIe lanes
Skylake processors have 20 lanes of communication to the PCH (Platform Controller Hub) but Kaby Lake adds an extra four. With the 16 PCIe lanes on the processor itself, a Kaby Lake system can have 40 PCIe lanes.
USB and Thunderbolt
These extra lanes are important particularly as PCIe is now being used for storage as SATA speeds become too limiting.
Kaby Lake also supports the latest version of USB-C (USB 3.1 Gen 2), which means speeds of up to 10Gb/s rather than 5Gb/s with Skylake. Again, that’s native support without needing a separate controller or add-in card on the motherboard. Similarly, there’s native support for Thunderbolt 3.0.
Kaby Lake systems can have up to 14 USB 2.0 and 3.0 ports and three PCIe 3.0 storage slots.